Click here to purchase
This SAE Recommended Practice presents a test procedure for determining the airborne sound insulation performance of materials and composite layers of materials commonly found in mobility, industrial and commercial products under conditions of representative size and sound incidence so as to allow better correlation with in-use sound insulator performance. The frequency range of interest is typically 125 to 8000 Hz 1/3 octave band center frequencies.

This test method is designed for testing flat samples, although in some applications the methodology can be extended to evaluate formed parts, pass-throughs, or other assemblies to determine their acoustical properties. For non-flat parts or assemblies where transmitted sound varies strongly across the test sample surface, a more appropriate methodology would be ASTM E90 (with a reverberant receiving chamber) or ASTM E 2249 (intensity method with an anechoic or hemianechoic receiving chamber).

Product Details

Published:
08/05/2010
File Size:
1 file , 270 KB

Click here to purchase

This SAE Recommended Practice presents a test procedure for determining the airborne sound insulation performance of materials and composite layers of materials commonly found in mobility, industrial and commercial products under conditions of representative size and sound incidence so as to allow better correlation with in-use sound insulator performance. The frequency range of interest is typically 125 to 8000 Hz 1/3 octave band center frequencies.

This test method is designed for testing flat samples, although in some applications the methodology can be extended to evaluate formed parts, pass-throughs, or other assemblies to determine their acoustical properties. For non-flat parts or assemblies where transmitted sound varies strongly across the test sample surface, a more appropriate methodology would be ASTM E90 (with a reverberant receiving chamber) or ASTM E 2249 (intensity method with an anechoic or hemi-anechoic receiving chamber).

Product Details

Published:
08/01/2010
File Size:
1 file , 270 KB