Click here to purchase

1.1 These practices cover techniques suitable for dissolving glass samples that may contain nuclear wastes. These techniques used together or independently will produce solutions that can be analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS), atomic absorption spectrometry (AAS), radiochemical methods and wet chemical techniques for major components, minor components and radionuclides.

1.2 One of the fusion practices and the microwave practice can be used in hot cells and shielded hoods after modification to meet local operational requirements.

1.3 The user of these practices must follow radiation protection guidelines in place for their specific laboratories.

1.4 Additional information relating to safety is included in the text.

1.5 The dissolution techniques described in these practices can be used for quality control of the feed materials and the product of plants vitrifying nuclear waste materials in glass.

1.6 These practices are introduced to provide the user with an alternative means to Test Methods C 169 for dissolution of waste containing glass in shielded facilities. Test Methods C 169 is not practical for use in such facilities and with radioactive materials.

1.7 The ICP-AES methods in Test Methods C 1109 and C 1111 can be used to analyze the dissolved sample with additional sample preparation as necessary and with matrix effect considerations. Additional information as to other analytical methods can be found in Test Method C 169.

1.8 Solutions from this practice may be suitable for analysis using ICP-MS after establishing laboratory performance criteria.

This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section .

Product Details

Published:
04/10/2000
Number of Pages:
10
File Size:
1 file , 180 KB