Click here to purchase

1.1 This test method determines the fatigue behavior of polymer matrix composite materials subjected to tensile cyclic loading. The composite material forms are limited to continuous-fiber or discontinuous-fiber reinforced composites for which the elastic properties are specially orthotropic with respect to the test direction. This test method is limited to unnotched test specimens subjected to constant amplitude uniaxial in-plane loading where the loading is defined in terms of a test control parameter.

1.2 This test method presents two procedures where each defines a different test control parameter.

1.2.1 Procedure A – A system in which the test control parameter is the load (stress) and the machine is controlled so that the test specimen is subjected to repetitive constant amplitude load cycles. In this procedure, the test control parameter may be described using either engineering stress or applied load as a constant amplitude fatigue variable.

1.2.2 Procedure B – A system in which the test control parameter is the strain in the loading direction and the machine is controlled so that the test specimen is subjected to repetitive constant amplitude strain cycles. In this procedure, the test control parameter may be described using engineering strain in the loading direction as a constant amplitude fatigue variable.

1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text the inch-pound units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in non-conformance with this standard.

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Product Details

Published:
01/01/2002
Number of Pages:
6
File Size:
1 file , 41 KB