Click here to purchase

A computational study on air-side thermo-hudraulic performance for micro-channel heat exchangers is performed. In order to analyze the air-side thermal hydraulic performance a detailed computational study was performed over Reynolds number range of 35 to 300. The computional analysis was performed using the commonly used parameters of the commercially used heat exchangers in automotive industry. The parameters like flow depth, louver angle, fin pitch and louver height were kept constant and are 20mm (78.7in), 27° (0.47rad), 1.4mm (0.055in) and 6.4mm (0.252in) respectively, while the louver pitch was varied from 1.5mm (0.059in) to 1.9mm (0.075in). The computational results of air-side heat transfer coefficient and pressure drop across the louvered fin are reported in terms of Colburn j-factor and fanning friction f-factor. The trend of change in the air-side heat transfer coefficient and pressure drop associated with the change in louver pitch is also observed and reported. Critical Reynolds number is also obersed and its variation with the change in louver pitch is also reported. The results extracted from the performed analysis are also compared with the previous studies.

Citation: 6th International Conference on Energy Research and Development, State of Kuwait, March 14–16, 2016

Product Details

Published:
2016
Number of Pages:
8
Units of Measure:
Dual
File Size:
1 file , 2.3 MB
Product Code(s):
D-ICER16-23