Construction practices for multi-unit wood-frame residential buildings in British Columbia, Canada, are changing in response to a large number of envelope failures experienced in the period from 1985 to 1999. The new design approach includes the use of enhanced deflection and a drained cavity. While this approach will manage a large portion of the exterior moisture load, we have to assume that some moisture will enter the wall during the life of the building; consequently, designs also need to incorporate enhanced drying capabilities. A research program conducted in Vancouver, British Columbia, has evaluated the relative drying rates of wall assemblies under controlled laboratory conditions. Test conditions included Vancouver wintertime drying only. Test panels incorporated polyethylene vapor retarder and sealed poly air barrier construction. The research ranks test wall panels in terms of their relative drying capacities, identifies potential wall locations at greater risk of slow drying (thus requiring enhanced material durability), and derives baseline data that can be used to improve parametric models of wall performance.
Authors:Donald G. Hazleden; Paul I. Morris, Ph.D.
Citation: Thermal Performance of the Exterior Envelopes of Buildings VIII
Keywords:December, Florida, 2001
Citation: Thermal Performance of the Exterior Envelopes of Whole Buildings VIII
Product Details
- Published:
- 2001
- File Size:
- 1 file , 3.4 MB
- Product Code(s):
- D-8031